

Version 2.0.42 clickworker Page 1 of 63

Version: 2.0.42; 2022-11-22

© 2022 clickworker GmbH. All rights reserved. No part of this document may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without express written permission from clickworker GmbH. Contents of this
document are subject to change without notice.
clickworker and clickworker.com are registered trademarks of clickworker GmbH.
All other trademarks mentioned in this document or on the web site are the property of their respective
owner.

Application Programming Interface Description

Clickworker Marketplace API

Version 2.0.42 clickworker Page 2 of 63

Table Of Contents

Welcome ... 5
Who Should Read This Guide .. 5

Required Knowledge and Skills .. 5
Typing .. 6

Change Log .. 7

Overview ... 9
Environments and Endpoints ... 9

Production Environment ... 9
Sandbox environment ... 9

Further Examples .. 10
Getting Help .. 10

API Usage ... 11
Context .. 11
Request Headers .. 11

Attributes ... 11
Common Request Parameters .. 12

Request Status ... 13
Attributes ... 13

Localization Support ... 14

API Usage ... 15
Customer ... 15

Attributes ... 15
Representation ... 15
Operations ... 16

View Customer Account ... 16
Product .. 16

Attributes ... 17
Representation ... 17
Operations ... 18

List Available Products ... 18
View Product Details .. 19

Product Attribute ... 20
Attributes ... 20
Representation ... 20

Clickworkers .. 21
Operations ... 21

Count Clickworkers In Radius .. 21
Count Clickworker in Bounding Box .. 21

Form Element ... 27
Attributes ... 28
Representation ... 28
Options .. 30

Single Line Text (“text_field”) Options ... 30
Multi Line Text (“text_area”) Options .. 30
Numeric (“number”) Options ... 30
Date (“date”) Options ... 30
Multi media (“media”) Options .. 30
Keyword (“keyword”) Options .. 30

Version 2.0.42 clickworker Page 3 of 63

E-Mail (“email”) Options ... 31
URL (“url”) Options ... 31
Select (“drop_box”, “multi_select”, “check_box” and “radio_button”) Options 31

Task Template .. 32
Attributes ... 33
Representation ... 33
Operations ... 34

Index Registered Task Templates ... 34
Create a new Task Template ... 34
View Task Template Details ... 36
Update Task Template ... 38
Delete a Task Template ... 38
Add Clickworker to Task Template blacklist ... 39

Task ... 39
Attributes ... 40

Task Result Additions ... 40
Task States ... 40

Representation ... 41
Operations ... 42

List Tasks .. 42
Search Tasks by Customer Reference .. 44
Create Task ... 45
View Task Details .. 46
Delete Task ... 47
Clickworker Bonus Payment .. 48

Notification .. 48
Attributes ... 49
Representation ... 49
Notification Payload ... 49
Operations ... 50

List Registered Notifications .. 50
Job ... 51

Attributes ... 51
Representation ... 52
Operations ... 53

Index Registered Jobs .. 53
View Job Details .. 54
Update Jobs .. 54

Entity Relationship Diagram .. 56

API Principles ... 57
Managing resources using REST ... 57

URI ... 57
Representing Resources Using XML or JSON ... 57
Calling operations using HTTP methods ... 58

GET: Display or index resources .. 58
POST: Create a new resource .. 59
PUT: Update an existing resource ... 59
DELETE: Remove and existing resource ... 59

Reporting status using HTTP codes .. 59
Authentication and Transport Security ... 60
Verifying A Client Setup .. 61

Calling the Echo Service ... 61

Version 2.0.42 clickworker Page 4 of 63

Without Authentication .. 61
With Authentication .. 62

Version 2.0.42 clickworker Page 5 of 63

Welcome
Clickworker's REST-based Web services allow customers to access the company's crowdsourcing
services through an API and integrate them seamlessly into their applications.

The API has been designed to meet the needs of two distinct customer groups:

• Customers buying predefined products from the Clickworker Marketplace
• Customers uploading data for projects managed by the Clickworker solutions team.

Customers may use the API to order services offered in the Clickworker Marketplace. Clickworker
offers a wide range of services, such as content creation, text translation and Internet research.
Customers may use these services through the Web based marketplace portal on
www.clickworker.com or by integrating them through the Clickworker Marketplace API. Most of our
marketplace products can be customized to meet the specific data format requirements of customers,
such as the number of fields to research. All products are based on Clickworker’s leading edge quality
control and quality assurance technology.

Customers who order custom projects managed by the Clickworker solutions department may use the
API to integrate their IT systems with the Clickworker crowdsourcing platform in order to submit new
tasks and review results on an ongoing basis.

Who Should Read This Guide
This document’s primary audience is our clients’ software developers. It aims to provide a brief
description of each API entity and its available operations. Practical examples will be included to assist
with implementation.

Required Knowledge and Skills
Familiarity with the following is recommended before using this guide:

• Basic understanding of the Extensible Markup Language (XML) or JavaScript Object Notation
(JSON)

• Basic understanding of the Hypertext Transfer Protocol (HTTP)

Version 2.0.42 clickworker Page 6 of 63

Typing
The following conventions will be used throughout this guide:

• Arguments, in either the form of request parameters or response variables, are put inside
curly braces and prefixed by a dollar sign ($). They use a unique name that corresponds to
the associated explanation (Example: “${id}”).

• References to API entities use square brackets, prefixed by a dollar sign (Example: $[Request
Status]). If the reference points to a list containing any amount of instances of the referenced
entity (or none at all, for that matter), an asterisk (*) is appended to the entity’s name.

• Values for variables and parameters are put inside chevrons and prefixed by a dollar sign. If
the value can be chosen from a predefined list of values, the pipe character is used.
Examples: “$<GET|POST>”.

• Patterns that need to be replaced by a meaningful substitute are put inside square brackets,
like [endpoint].

Version 2.0.42 clickworker Page 7 of 63

Change Log
Version 2.0.42 (November 2022)

• Corrected API endpoints
• Retirement of XML integration
• Getting Support
• Removing XML Examples

Version 2.0.41 (September 2016)

• Added bonus payments for clickworker

Version 2.0.40 (January 2016)
• Various document fixes

Version 2.0.30 (24th September 2013)

• Added search tasks by customer reference, state and creation date.
• Added ability to update of task template attributes.

Version 2.0.29 (7th August 2013)

• _page_size parameter was limited to 50 records by default. Handling exception when
_page_number or _page_size were specified as blank.

Version 2.0.28 (13th February 2013)
• Correction to version number and title page.

Version 2.0.27 (7th February 2013)

• Describe the changes for supporting cloned task.

Version 2.0.26 (7th January 2013)

• Fixing error in example for task create operation (JSON version)

Version 2.0.25 (3rd January 2013)

• Fixing postal code, CEO and year of copyright

Version 2.0.24 (12th September 2012)

• Add author in notification

Version 2.0.23 (12th January 2012)

• Fixing of API-Documentation

Version 2.0.22 (24th October 2011)

• Fixing name of CEO

Version 2.0.20 (11th October 2011)

• Notifications is now optional in create task request.
• Changed update job json request to wrap the input body by a items hash.
• Renamed top node of index view XML from task to tasks.
• Changed representations of link from hash to array of hashes in task and job JSON

responses.
• Updated XML and JSON create task template request and task template details response:

added obligatory attribute textcreatewithkeywords_proof_read and changed value of attribute

Version 2.0.42 clickworker Page 8 of 63

textcreatewithkeywords_text_length, changed is_output of result element to true and added a
new element topic with is_output false. Set keyword element to is_output false. Added
keyword element reference_code. Wrapped form body by new elements hash in JSON
request.

• Renamed node task_template to task_templates in index view of task templates.
• Updated JSON of product attribute key "helps".
• Updated product link href and product code.

Version 2.0.3 (30th August 2011)

• Fixing Form Element reference

Version 2.0.3 (16th August 2011)

• Rewritten for API Version 2.0

Version 1.0.6 (3rd December 2010)

• Corrected spec for geospatial API calls

Version 1.0.5 (27th October 2010)
• Added geospatial support for customer projects

Version 1.0.4 (27th July 2010)

• Added support for additional POST parameters in notifications

Version 1.0.3 (14th July 2010)
• Call “create task” extended to allow specifying delivery call backs
• Notifications now include payload data (optional).
• Support for JSON and custom response format
• Corrected documentation to correctly show .xml extension in REST calls

Version 1.0.2 (1st April 2010)

• Added error codes
• Added task state descriptions

Version 1.0.1 (23rd March 2010)

• Extended call "task_info" to include the task progress history.
• Renamed the request parameter "url" to "customer_url" for call "add_notification"
• Call "product_details" returns a list of attributes required for task creation, as well as the list of

job types that may require customer input.

Version 1.0 (2010)

• Initial Version

Version 2.0.42 clickworker Page 9 of 63

Overview
The Marketplace API allows customers to launch crowdsourcing projects via the API as an alternative
to using our self-service marketplace via the web-interface (https://marketplace.clickworker.com)

The API is a REST based API:

• Resources are identified using a Uniform Resource Identifier (URI). They can be represented
as XML or JSON structure.
Note: Support for XML format will be discontinued by 31st December 2023.

• HTTP “verbs” (e.g. GET or POST) are used to call available operations on these resources.
The outcome of an operation is reported using HTTP status codes (e.g. “200 OK”). Additional
information may be available in the response’s body.

• Clients must authenticate themselves using HTTP authentication (“Basic Auth”). To ensure
confidentiality, Transport Layer Security (TLS/SSL) is used.

Environments and Endpoints
We provide sandbox and production environments to facilitate development, testing and productive
use of the clickworker Marketplace API. Each environment has an API endpoint through which your
application communicates with the clickworker platform, as well as a web-portal for customers and a
web-portal intended for clickworkers working on projects and completing tasks submitted via the API.

Production Environment

Production environment uses the latest released version of the Marketplace API and is operating on
production level data. It fully interacts with external systems, like email servers or partner gateways.

The following URLs and API-Endpoints are available for production:

Customer Marketplace: https://marketplace.clickworker.com – Use this URL to login to your
customer account, e.g. to download invoices and to manage additional access for your colleagues.

Clickworker Workplace: https://workplace.clickworker.com – This is the User Interface used by
clickworkers to work on tasks. You may register as a clickworker yourself or

API Endpoint: https://api-production.clickworker.com/api/marketplace/v2/

Sandbox environment
The sandbox environment is intended for development purposes and integration testing. It uses the
latest released version of the Marketplace API, and operates on dedicated test data. This environment
has limited interaction with external systems, like email servers or partner gateways. Customers can
use this environment to test their client implementations. Note, that no clickworkers are active on the
sandbox environment. In order to test your integration, you can act as a clickworker using the sandbox
workplace by either creating your own clickworker account or contacting our marketplace support to
create accounts for you.

Customer Marketplace: https://sandbox-clickworkermanagement.clickworker.com – Use this URL to
login to your customer account, e.g. to download invoices and to manage additional access for your
colleagues.

Version 2.0.42 clickworker Page 10 of 63

Clickworker Workplace: https://sandbox-core5.clickworker.com – This is the User Interface used by
clickworkers to work on tasks. You may register as a clickworker yourself or

API Endpoint: https://api-sandbox.clickworker.com/api/marketplace/v2/

Further Examples
Under Services > API (https://www.clickworker.com/api/) you find additional examples using Postman
that demonstrate how to use the API for the different products (Surveys, TextCreation, Sentiment
Analyis, Mobile) available.

Getting Help
If you have questions or need help during API integration, then please do not hesitate to contact us.
Our marketplace support team is available as follows and will help or put you in touch with one of our
developers:

https://support-marketplace.clickworker.com/

Version 2.0.42 clickworker Page 11 of 63

API Usage
Almost every entity supports at least some of the typical CRUD operations (Create, Read, Update,
Delete). For every operation, the following details are given:

1. Request format and content, built from:
a. The request line, according to the HTTP 1.1 protocol
b. The request body description (if any)

2. Response format and content, built from:
a. The main HTTP status codes (see section “Reporting status using HTTP codes” for all

status codes)
b. The response body content (if any)

3. Arguments that are used in the request (parameter) or the response (variables)

Context
HTTP request shown in this document use the placeholder “[endpoint]”.

The [endpoint] marker must be replaced by the following content:
https://api-sandbox.clickworker.com/api/marketplace/v2/ or
https://api-production.clickworker.com/api/marketplace/v2/

Request Headers
The API supports XML and JSON formats for post and response structures.

Note: Support for XML format will be discontinued by 31st December 2023.

Use Request Headers Content-Type and Accept headers to specified the format of request and
response structures.
The example below using PostMan shows the correct settings for Content-Type when using JSON.

Attributes
REST resources support a variety of attributes. The specific attributes are listed inside a table for each
entity. Attributes that can be set using the API at creation time are marked as “r/c“. Those that can be
set at any time are marked as “r/w”. All others are read-only (“r/-“).

Attribute names are re-used wherever they serve the same purpose. The following table lists the most
common attributes:

Version 2.0.42 clickworker Page 12 of 63

Name Type Access Description
id Integer r/- Auto-generated, environment-local resource

identifier that cannot be changed. An id is
specific to a given environment (production,
sandbox, etc.). Example: A Job’s id

href URI r/- A fully qualified uniform resource identifier,
pointing to a resource collection or a resource
instance. This attribute is used to address or link
to other resources.

code String r/c A unique resource identifier that stays the same
when porting an entity from one environment to
another. The code must be URL compliant and
can only be set at creation time. Example: A
Product’s code

name String r/w A symbolic entity name that can be altered by
an authorised user at any time. Unlike the
“code” attribute, the name must not be URL
compliant. The attribute’s value is a single string
that does not support localisation.

titles Localized
String

r/w A descriptive entity title that can be altered at
any time by an authorised user. Unlike the
“name” attribute, titles do support localisation.

descriptions Localized
Text

r/w An extensive, localizable description of the
entity. Can be changed by an authorised user at
any time.

helps Localized
Text

r/w A context-aware description, providing further
information on how to manage the current
resource

Table 1: Common Attributes

Common Request Parameters
There is a set of URL parameters that control common aspects of all API operations or result
representations.

The following table lists and explains them:

Name Value(s) Synopsis
_method “PUT” or

“DELETE”
Can be used to call update (PUT) or delete
operations while using HTTP POST requests. This
parameter is designed to be used by clients that are
not capable of using HTTP verbs other than GET or
POST

_suppress_http_status “1” Always report status code 200 (“OK”) via the HTTP

Status header. The real status is only available via a
dedicated element in the response (see “Request
Status” below). The default is “0”

_page_size Integer value
between 1 and
50

Results of index requests use pagination to prevent
excessive transfer volume. This URL parameter can
control the page size. The default is 50. More size
will be adjusted to 50 as well.

Version 2.0.42 clickworker Page 13 of 63

_page_number Positive, integer
value

Defines the current page of a paginated result. E.g.,
a page size of 25 and a page number of 4 will
display records from 76 to 100. The default is 1

api_method Predefined
string value

This parameter is used to call a specific API method
that cannot be addressed solely by HTTP verbs.

filter_attribute Predefined
string value

Defines the entity attribute to use for filtering. See
details of entity indexing requests to see a list of
supported filter attributes.

filter_value String Value required for filter attribute to make the filter
match

Table 2: Common Entity Attributes

Request Status
The Request Status provides the success or error information of the request. In general, it contains
the HTTP status code and contains additional, human-readable error messages. It also contains
information about the pagination of the results.

Attributes
Name Type Access Description
id ID r/- A unique request id. Clients are encouraged to

store this id for support and debugging
purposes.

valid Boolean r/- Request validity indicator. <true> if the request
could be processed successfully

status_code numeric r/- The HTTP status code
status_text String r/- The equivalent HTTP status text
messages List of text r/- A list of additional messages, to provide more

in-depth information
total_count Positive integer

or 0
r/- Reports the total number of entities matching

the request. Will be zero for empty results.
page_num Positive integer r/- The current page in a paginated result. Page

numbering starts at page 1, even if the result is
empty (total_count is zero)

page_size Positive integer r/ The current page size in a paginated result. The
default value is 50, unless overridden by request
parameter -_page_size.

Table 3: Request Status Attributes

Representation
request_status: {
 id: “${id}”,
 valid: ${valid},
 status_code: ${status_code},
 status_text: ${status_text},
 messages: [
 “${message}”
],
 total_count: ${total_count},
 page_size: ${page_size},
 page_num: ${page_num}
}

Examples

Version 2.0.42 clickworker Page 14 of 63

request_status: {
 id: “az3n12j3h5b453j”,
 valid: true,
 status_code: 204,
 status_text: No Content,
 messages: [
 “Resource has been deleted.”
],
 total_count: 0,
 page_size: 0,
 page_num: 1
}

Localization Support
The Marketplace API supports localization. Clients can send information about the preferred locale
using standard HTTP headers (Accept-Language). The server will provide information about the
content language using the Content-Language HTTP header.

Entities that support multiple languages during creation (as TaskTemplate does) make use of
embedded XML elements or JSON value pairs, using the language code as the key.1

There will always be an English version available; all other languages are optional. For simplicity,
English is the only language that will be used in examples demonstrating API entities.

Example:

titles: {
 de: “Die ist die deutsche Nachricht”,
 en: “This is the English message”
}

1 See http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt for details.

Version 2.0.42 clickworker Page 15 of 63

API Usage
The following chapter lists all available REST resources and their operations. Resources are
described in the order as they would be naturally used in the development process, beginning with
customer account handling (see below) and moving on to selection and configuration of products,
creation of task templates and tasks, and progress observation using jobs and notifications.

Before performing specific API operations, developers should verify the general communication setup
by using the two dedicated “echo” services.

For every entity, a short description, attribute list and description of the available operations are given.

Customer
The Customer entity contains information related to the customer’s account at clickworker.com, such
as the current account balance. Customers order products using Task Templates and provide data to
create Tasks from it.

All of the attributes exposed to the Customer entity are read-only (r/-). Their primary purpose is to
allow account balance monitoring.

Attributes
Name Type Access Description
balance_amount Numeric r/- The money available on the customer’s

account
credit_limit Numeric r/- The credit limit granted to the customer. It's

always a numeric value greater than or equal
to zero. Customers can only submit new
orders and tasks as long as the cost for the
task <= balance amount + credit limit.

reserved_amount Numeric r/- The amount of money reserved for running
tasks

currency_code String r/- The customer’s currency, based on ISO
codes. This will be applied to all clickworker
services requested by the customer.

Table 4: Customer Entity Attributes

Representation

customer: {
 link: [{
 href: “${href}”,
 rel: “self”,
 type: “application/json”
 }],
 balance: {
 balance_amount: ${balance_amount},
 reserved_amount: ${reserved_amount},
 credit_limit: ${credit_limit},
 currency_code: “${currency_code}”

Version 2.0.42 clickworker Page 16 of 63

 }
}

Operations
Account information is returned for the customer account, which authenticates using the request’s
credentials. As a result, there is no customer id or name present in the URI.

Calling /customer without further information will print the customer’s account data.

View Customer Account

Request
Request line:

GET [endpoint]/customer
Request parameter:
 (Common only)
Request body:
 (Empty)

Response
Response status:

• 200, if the resource was found
• 401, if the incoming request does not contain useable credentials
• 403, if the given credentials do not match a registered customer

Response body:

customer_response: {
 request_status: […],
 customer: {
 link: [{
 href: “/api/marketplace/v2/customer”,
 rel: “self”,
 type: “application/json”
 }],
 balance: {
 balance_amount: 20000.00,
 reserved_amount: 5000.00,
 credit_limit: 3000.00,
 currency_code: “EUR”
 }
 }
}

Product
A Product relates to a specific crowdsourcing service offered by Clickworker, such as text creation,
translation, etc. There are two types of products:

1. Standard products: These are off-the-shelf, preconfigured products for direct use as offered
via the Marketplace

2. Solutions products: These are custom services tailored for specific customer projects.

Version 2.0.42 clickworker Page 17 of 63

Using the Marketplace API, customers can order and use preconfigured Marketplace products or
submit new tasks for custom products. In order to use a standard product, the customer must select
the product using the appropriate resource URI and provide the additional parameters required for the
chosen product, such as the target language for text creation.

Attributes
Name Type Access Description
available Boolean r/- <true>, if the product is currently available for

ordering
attributes List r/- A list of product attributes that are supported

(and sometimes required) to configure the
product. See the “Product Attribute” section for a
formal description.

Table 5: Product Entity Attributes

Representation
The Product entity supports indexed and detailed views.

• Detail View
product: {
 link: [{
 href: “[endpoint]/products/${code}”,
 rel: “self”,
 type: “application/json”
 }],
 code: “${code}”,
 titles: {
 “$<en|de|fr>”: “${title}”
 },
 descriptions: {
 “$<en|de|fr>”: “${description}”
 },
 available: ${available},
 attributes: [{
 “code”: “${code}”,
 “type”: “${type}”,
 “is_mandatory”: ${is_mandatory},
 titles: {
 “$<en|de|fr>”: “${title}”
 },
 help: “${title}”,
 options: [{
 titles: {
 “$<en|de|fr>”: “${title}”
 },
 value”: “${opt_value}“
 }]
 }]
}

• Index View
{
 link: [{

Version 2.0.42 clickworker Page 18 of 63

 href: “[endpoint]/products/${code}”,
 rel: “self”,
 type: “application/json”
 }],
 code: “${code}”,
 titles: {
 “$<en|de|fr>”: “${title}”
 },
 available: ${available}
}

Operations

List Available Products
Displays a brief summary of each product. Note: This operation only lists products that are currently
available. Deprecated products may still be accessed using their URI for reference in existing orders.

Request
Request line:

GET [endpoint]/products/
Request parameter:
 (Common only)
Request body:
 (Empty)

Response
Response status:

• 200, if the request could be properly handled (even if no products were found)
Response body:

• Example
{
 request_status: ... ,
 products: [{
 link: [{
 href: “/api/marketplace/v2/products/TextCreate”,
 rel: “product”,
 type: “application/json”
 }],
 code: “TextCreate”,
 titles: {
 en: “Text creation”
 },
 available: true
 },{
 link: [{
 href: “/api/marketplace/v2/products/TextCreateWithKeywords”,
 rel: “product”,
 type: “application/json”
 }],
 code: “TextCreateWithKeywords”,
 titles: {
 en: “Text creation with keywords”
 },
 available: true
 }]

Version 2.0.42 clickworker Page 19 of 63

}

View Product Details

Request
Request line:

GET [endpoint]/products/${code}
Request parameter:
 (Common only)
Request body:
 (Empty)

Response
Response status:

• 200, if the addressed resource was found
• 404, if the addressed resource was not found

Response body:
• Example
product_response: {
 request_status: ... ,
 product: {
 link: [{
 href: “/api/marketplace/v2/products/product_research”,
 rel: “self”,
 type: “application/json”
 }],
 code: “product_research”,
 titles: {
 en: “Product Research”
 },
 descriptions: {
 en: “Identify product details using a Internet search.”
 },
 available: true,
 attributes: [{
 code: “research_language”,
 type: “option”,
 is_mandatory: true,
 titles: {
 en: “Research Language”
 },
 helps: {
 en: “Defines the language to use for creating the research result.”
 },
 options: [{
 titles: {
 en: “German”
 },
 value: “de”
 },{
 titles: {
 en: “English”
 },
 value: “en”
 }]
 }]

Version 2.0.42 clickworker Page 20 of 63

 }
}

Product Attribute
Product Attributes provide meta information about parameters required for task submission. Each
product may require one or more additional parameters to be supplied when submitting a task, such
as the requested target language for text creation. Task Templates are used to store sets of Product
Attribute values along with other information such as the work instructions.

Although every Product may have a dedicated set of required and optional Product Attributes, the
Product Attribute itself is a standardized element.

Attributes
Name Type Access Description
code String r/- A symbolic name for the Product Attribute, URI

compatible
type String r/- Product Attribute type indicator. One of the

following:
• string: for text attributes
• option: for predefined attribute values
• integer: for numeric attributes
• date: for time-based attributes

titles Localized
String

r/- The localized title of this Product Attribute

helps Localized
Text

r/- The localized help text for this Product Attribute

is_mandatory Boolean r/- Mandatory indicator
min_length numeric r/- Minimum text value length for type=string
max_length numeric r/- Maximum text value length for type=string
options List r/- A list of predefined attribute values, only present

if type is “option.” An option has two attributes:
1. The options value (opt_value)
2. The options title (opt_title), localized

value String r/w The Product Attribute’s value

Table 6: Product Attribute Entity Attributes

Representation
{
 “code”: “${code}”,
 “type”: “${type}”,
 “is_mandatory”: ${is_mandatory},
 titles: {
 “$<en|de|fr>”: “${title}”
 },
 helps: {
 “$<en|de|fr>”: “${title}”
 },
 options: [{
 titles: {
 “$<en|de|fr>”: “${title}”
 },

Version 2.0.42 clickworker Page 21 of 63

 value”: “${opt_value}“
 }]
}

Clickworkers
Clickworkers are the people working and fulfilling the customer’s tasks. In order to work on a task, a
clickworker must meet specific prerequisites, such as being proficient in a specific language. In
addition, clickworkers must pass a set of assessments and have gained a reasonable level of
experience (“score”). Once they have a sufficient score, they may work on available jobs. For each
product, clickworker.com controls which entry criteria must be met by a clickworker.
Due to privacy concerns, data about individual clickworkers cannot be made public via the
Marketplace API.

Operations
Unconditional access to clickworkers is not permitted due to privacy concerns. However, filters may be
applied to select certain subsets of the clickworker user base. Methods are provided to make sure
there are clickworkers available to handle certain tasks. Calling these methods requires additional
request parameters to be provided.

Count Clickworkers In Radius
Counts all clickworkers within a given radius. Its geographical center and radius describe the range.
The minimum radius allowed is 10 kilometers (6.2 miles); smaller radiuses will be adjusted
accordingly.

Request
Request line:

GET [endpoint]/clickworkers?api_method=count_in_radius
&latitude=${latitude}&longitude=${longitude}&r=${radius}

Request body:
 (empty)
Request parameters:

Name Type Synopsis Mandatory
latitude Numeric The latitude of the geographical center Yes
longitude Numeric The longitude of the geographical center Yes
r Integer The radius in kilometers Yes

Response
Response status:

• 200, if the request could be handled properly (even if no clickworkers were found)
Response body

• Example
clickworkers_response: {
 request_status: { … },
 clickworker_count: 9200
}

Count Clickworker in Bounding Box
Counts all clickworkers located within a given area. Its geographical boundaries (southwest and
northeast corners) describe a square area. The minimum latitude / longitude difference of the two

Version 2.0.42 clickworker Page 22 of 63

corner coordinates must be equivalent to an area of at least 10km2 (3.9 square miles). If a smaller
area is defined, it will maintain the southwest origin and expand.

Request
Request line:
 GET [endpoint]/clickworkers?api_method=count_in_bounding_box

&sw_latitude=${sw-lat}&sw_longitude=${sw-long}
&ne_latitude=${ne-lat}&ne_longitude=${ne-long}

Request parameters:
Name Value(s) Synopsis Mandatory
sw_latitude Numeric The latitude of the box’s southwest coordinate Yes
sw_longitude Numeric The longitude of the box’s southwest

coordinate
Yes

ne_latitude Numeric The latitude of the box’s northeast coordinate Yes
ne_longitude Numeric The longitude of the box’s northeast

coordinate
Yes

Request body:
 (Empty)

Response
Response status:

• 200, if the request could be handled properly (even if no clickworkers were found)
Response body
 (Identical to the response body of operation “Count Clickworkers In Radius”)

<clickworker_list>
 <link href=”[context]/customer/clickworker_lists/${code}”
 type=”application/xml” rel=”self” />
 <id>${id}</id>
 <code>${code}</code>
 <name>${name}</name>
 <type>$<blacklist|whitelist></type>
</clickworker_list>
clickworker_list: {
 link: [{
 href: “[context]/customers/clickworker_lists/${code}”,
 rel: “self”,
 type: “application/json”
 }],
 id: ${id},
 code: “${code}”,
 name: “${name}”,
 type: “$<blacklist|whitelist>”,
}
<clickworker_lists_response>
 <request_status>...</request_status>
 <clickworker_lists>
 <link href=“/api/marketplace/v2/customer/clickworker_lists/my_blacklist”
 type=”application/xml” rel=”self” />
 </clickworker_lists>
 <clickworker_lists>
 <link href=“/api/marketplace/v2/customer/clickworker_lists/my_whitelist”
 type=”application/xml” rel=”self” />
 </clickworker_lists>
</clickworker_lists_response>
clickworker_list_response: {
 request_status: ... ,

Version 2.0.42 clickworker Page 23 of 63

 clickworker_lists: [{
 link: [{
 href: “/api/marketplace/v2/customers/clickworker_lists/my_blacklist”,
 rel: “self”,
 type: “application/json”
 }]
 },{
 link: [{
 href: “/api/marketplace/v2/customers/clickworker_lists/my_whitelist”,
 rel: “self”,
 type: “application/json”
 }]
 }]
}
<clickworker_list>
 <code>my_whitelist</code>
 <name>My Whitelist</name>
 <type>whitelist</type>
</clickworker_list>
clickworker_list: {
 code: “my_blacklist”,
 name: “My Blacklist”,
 type: “blacklist”
}
<clickworker_list_response>
 <request_status>...</request_status>
 <clickworker_list>
 <link href=“/api/marketplace/v2/customer/clickworker_lists/my_whitelist”
 rel=”self” type=”application/xml” />
 <id>1</id>
 <code>my_whitelist</code>
 <name>My Whitelist</name>
 <type>whitelist</type>
 </clickworker_list>
</clickworker_list_response>
clickworker_list_response: {
 request_status: ... ,
 clickworker_list: {
 self: “/api/marketplace/v2/customer/clickworker_lists/my_blacklist”,
 id: 2,
 code: “my_blacklist”,
 name: “My Blacklist”,
 type: “blacklist”,
 }
}
<clickworker_list_response>
 <request_status>...</request_status>
 <clickworker_list>
 <link href=“/api/marketplace/v2/customer/clickworker_lists/my_whitelist”
 type=”application/xml” rel=”self” />
 <id>1</id>
 <code>my_whitelist</code>
 <name>My Whitelist</name>
 <type>whitelist</type>
 <clickworkers>
 <link href=”/api/marketplace/v2/clickworkers/1234” rel=”self”
 type=”application/xml” />
 </clickworkers>
 <clickworkers>

Version 2.0.42 clickworker Page 24 of 63

 <link href=”/api/marketplace/v2/clickworkers/5678” rel=”self”
 type=”application/xml” />
 </clickworkers>
 </clickworker_list>
</clickworker_list_response>
clickworker_list_response: {
 request_status: ... ,
 clickworker_list: {
 link: [{
 href: “/api/marketplace/v2/customers/clickworker_lists/my_blacklist”,
 rel: “self”,
 type: “application/json”
 }],
 id: 2,
 code: “my_blacklist”,
 name: “My Blacklist”,
 type: “blacklist”,
 clickworkers: [{
 link: [{
 href: “/api/marketplace/v2/customers/clickworkers/1234”,
 rel: “self”,
 type: “application/json”
 }],
 },{
 link: [{
 href: “/api/marketplace/v2/customers/clickworker_lists/my_blacklist”,
 rel: “self”,
 type: “application/json”
 }]
 }]
 }
}
<clickworker_list>
 <name>${name}</name>
</clickworker_list>
clickworker_list: {
 name: “${name}”,
}
<update_clickworker_list_response>
 <request_status>...</request_status>
 <clickworker_list>
 <link href=“/api/marketplace/v2/customer/clickworker_lists/my_whitelist”
 rel=”self” type=”application/xml” />
 <id>1</id>
 <code>my_whitelist</code>
 <name>My Whitelist</name>
 <type>whitelist</type>
<clickworkers>
 <link href=”/api/marketplace/v2/clickworkers/1234” rel=”self”
 type=”application/xml” />
 </clickworkers>
 <clickworkers>
 <link href=”/api/marketplace/v2/clickworkers/5678” rel=”self”
 type=”application/xml” />
 </clickworkers>
 </clickworker_list>
</update_clickworker_list_response>
update_clickworker_list_response: {
 request_status: {…},

Version 2.0.42 clickworker Page 25 of 63

 clickworker_list: {
 link: [{
 href: “/api/marketplace/v2/customers/clickworker_lists/my_blacklist”,
 rel: “self”,
 type: “application/json”
 }],
 id: 2,
 code: “my_blacklist”,
 name: “My Blacklist”,
 type: “blacklist”,
 clickworkers: [{
 link: [{
 href: “/api/marketplace/v2/customers/clickworkers/1234”,
 rel: “self”,
 type: “application/json”
 }],
 },{
 link: [{
 href: “/api/marketplace/v2/customers/clickworker_lists/my_blacklist”,
 rel: “self”,
 type: “application/json”
 }]
 }]
 }
}
<clickworkers_response>
 <request_status>...</request_status>
 <clickworkers>
 <link href=“/api/marketplace/v2/clickworkers/123” rel=”self”
 type=”application/xml” />
 </clickworkers>
 <clickworkers>
 <link href=“/api/marketplace/v2/clickworkers/456” rel=”self”
 type=”application/xml” />
 </clickworkers>
 <clickworkers>
 <link href=“/api/marketplace/v2/clickworkers789” rel=”self”
 type=”application/xml” />
 </clickworkers>
</clickworkers_response>
clickworkers_response: {
 request_status: ... ,
 clickworkers: [{
 link: {
 href: “/api/marketplace/v2/clickworkers/123”,
 rel: “self”,
 type: “application/json”
 }
 },{
 link: {
 href: “/api/marketplace/v2/clickworkers/456”,
 rel: “self”,
 type: “application/json”
 }
 },{
 link: {
 href: “/api/marketplace/v2/clickworkers/789”,
 rel: “self”,
 type: “application/json”

Version 2.0.42 clickworker Page 26 of 63

 }
 }]
}
<clickworker>
 <link href=“/api/marketplace/v2/clickworkers/543” />
</clickworker>
clickworker: {
 link: {
 href: “/api/marketplace/v2/clickworkers/543”
 }
}
<clickworkers_response>
 <request_status>...</request_status>
 <clickworkers>
 <link href=“/api/marketplace/v2/clickworkers/123” rel=”self”
 type=”application/xml” />
 </clickworkers>
 <clickworkers>
 <link href=“/api/marketplace/v2/clickworkers/456” rel=”self”
 type=”application/xml” />
 </clickworkers>
 <clickworkers>
 <link href=“/api/marketplace/v2/clickworkers789” rel=”self”
 type=”application/xml” />
 </clickworkers>
</clickworkers_response>
clickworkers_response: {
 request_status: ... ,
 clickworkers: [{
 link: {
 href: “/api/marketplace/v2/clickworkers/123”,
 rel: “self”,
 type: “application/json”
 }
 },{
 link: {
 href: “/api/marketplace/v2/clickworkers/456”,
 rel: “self”,
 type: “application/json”
 }
 },{
 link: {
 href: “/api/marketplace/v2/clickworkers/789”,
 rel: “self”,
 type: “application/json”
 }
 }]
}
<clickworkers_response>
 <request_status>...</request_status>
 <clickworkers>
 <link href=“/api/marketplace/v2/clickworkers/123” rel=”self”
 type=”application/xml” />
 </clickworkers>
 <clickworkers>
 <link href=“/api/marketplace/v2/clickworkers/456” rel=”self”
 type=”application/xml” />
 </clickworkers>
 <clickworkers>

Version 2.0.42 clickworker Page 27 of 63

 <link href=“/api/marketplace/v2/clickworkers789” rel=”self”
 type=”application/xml” />
 </clickworkers>
</clickworkers_response>
clickworkers_response: {
 request_status: ... ,
 clickworkers: [{
 link: {
 href: “/api/marketplace/v2/clickworkers/123”,
 rel: “self”,
 type: “application/json”
 }
 },{
 link: {
 href: “/api/marketplace/v2/clickworkers/456”,
 rel: “self”,
 type: “application/json”
 }
 },{
 link: {
 href: “/api/marketplace/v2/clickworkers/789”,
 rel: “self”,
 type: “application/json”
 }
 }]
}

Form Element
Presenting the customer’s data to the clickworker requires a visual representation. Customers can
control the output and apply rules to the input using a “Form.” A Form is a container element living
inside a Task Template or a Job. It defines Form Elements, which are used for rendering data or input
fields in various formats, like HTML.

Every Form Element has a type. Currently, the following types are available:

• Single Line Text (type marker “text_field”)
• Multi-Line Text (type marker “text_area”)
• Numeric (type marker “number”)
• Date (type marker “date”)
• Multi media (type marker “media”)
• Keyword (type marker “keyword”)
• URL (type marker “url”)
• E-Mail Address (type marker “email”)
• Selection from a definable list of options in several visual representations

o Drop down box (type marker “drop_box”)
o List box with multiple selection (type marker “multi_select”)
o Group of check boxes (type marker “check_box”)
o Group of radio buttons (type marker “radio_button”)

Please note: Forms are presented in the clickworker’s own language, if available. At the very least,
customers must provide an English version of attributes like title and help.

Version 2.0.42 clickworker Page 28 of 63

Attributes
Name Type Access Description
type String r/c An indicator for the elements type. Supported

values are:
• text_field
• text_area
• number
• keyword
• url
• email
• select

code String r/- The element’s symbolic name. Used to identify
the element in certain situations.

titles Localized
String

r/w The Form Element’s title, as presented to the
clickworker

descriptions Localized
Text

r/- The description is only used by Job entities,
which reuse the concept of Form Elements.

is_output Boolean r/w If set to <true>, the element will be used to
output task data, if set to <false> it will store the
received data to the Task.

is_mandatory Boolean r/w The Form Element’s “mandatory” indicator. This
attribute must be set to <true> if the clickworker
is required to enter a value for this element.

item_code String r/w Allows the Task’s data to be referenced by this
element.

If the element has set the “is_output” attribute to
<true>, the data to display is fetched from the
given column. If it’s set to <false>, the column is
populated by the element’s value

options Object r/w Options to configure the Form Element,
depending on its type. Every option has two
attributes:

• The option’s code (opt_code)
• The option’s value (opt_value)

Table 8: Form Element Entity Attributes
As stated above, every Form Element supports a set of options based on its type. The following
sections list the available options for each type.

Representation
• Single Instance
{
 type: “Fehler! Verweisquelle konnte nicht gefunden werden.”,
 titles: {
 “$<en|fr|de>”: “${title}”
 },
 descriptions: {
 “$<en|fr|de>”: “${description}”
 },
 item_code: “${item_code}”,
 is_output: ${is_output},
 is_mandatory: ${is_mandatory},
 options: [{
 code: “${opt_code}”,

Version 2.0.42 clickworker Page 29 of 63

 value: ${opt_value}
 }]
}

Version 2.0.42 clickworker Page 30 of 63

Options

Single Line Text (“text_field”) Options
Code Value Description Required
is_mandatory Boolean Defines whether this field must be filled out by the

clickworker. The default is “false”
Yes

min_length Integer Minimum input length in characters No
max_length Integer Maximum input length in characters No

Table 9: Element “text_field” Options

Multi Line Text (“text_area”) Options
Code Value Description Required
is_mandatory Boolean Defines whether this field must be filled out by the

clickworker. The default is “false”
Yes

min_length Integer Minimum input length in characters No
max_length Integer Maximum input length in characters No
is_richtext Boolean Defines, whether this field supports HTML rich

text. The default is “false”
No

Table 10: Element “text_area” Options

Numeric (“number”) Options
Code Value Description Required
is_mandatory Boolean Defines whether this field must be filled out by the

clickworker. The default is “false”
Yes

min_value Integer The minimum value allowed No
max_value Integer The maximum value allowed No

Table 11: Element "number" Options

Date (“date”) Options
Code Value Description Required
is_mandatory Boolean Defines whether this field must be filled out by the

clickworker. The default is “false”
Yes

min_date Date Defines the earliest date that can be entered by
the clickworker

No

max_date Date Defines the latest date that can be entered by the
clickworker

No

Table 12: Element "date" Options

Multi media (“media”) Options
Code Value Description Required
is_mandatory Boolean Defines whether this field must be filled out by the

clickworker. The default is “false”
Yes

media_player String Defines which media player should be used (at
this time only “flowplayer” is supported)

No

Table 13: Element "media" Options

Keyword (“keyword”) Options
Code Value Description Required
is_mandatory Boolean Defines whether this field must be filled out by

the clickworker. The default is “false”
Yes

Version 2.0.42 clickworker Page 31 of 63

min_occurrence_ref String The minimum keyword occurrence count is not
set directly, but is instead read from the Task’s
data. This option defines the Task’s data item
code to read from.

No

max_occurrence_ref String The maximum keyword occurrence count is not
set directly, but is instead read from the Task’s
data. This option defines the Task’s data item
code to read from.

No

reference_code String Defines the Task’s data item where keywords
are expected and will be counted. Enter the
code of a data item here to check for keywords
only in this item. Otherwise, leave blank or use
the special value “:all” to scan for keywords in
all suitable fields

No

density_unit “percent”
or
“absolute”

Defines how the min/max occurrence values
will be interpreted:

• Using “percent” will interpret the value
as a percent value. To use “5” as an
example, the given keywords must
make up 5% of the entire input

• Using “absolute” will interpret the value
as a fixed quantity. With an example of
“5,” the given keywords must occur 5
times in all scanned input fields.

No

Table 14: Element "keyword" Options

E-Mail (“email”) Options
Code Value Description Required
is_mandatory Boolean Defines whether this field must be filled out by the

clickworker. The default is “false”
Yes

Table 15: Element "email" Options

URL (“url”) Options
Code Value Description Required
is_mandatory Boolean Defines whether this field must be filled out by the

clickworker. The default is “false”
Yes

with_protocol Boolean Defines whether the user has to enter the protocol
prefix (e.g. http://)

No

Table 16: Element "url" Options

Select (“drop_box”, “multi_select”, “check_box” and “radio_button”) Options
Code Value Description Required
is_mandatory Boolean Defines whether this field must be filled out by

the clickworker. The default is “false”
Yes

alternatives

List List of alternatives to pick from. Every alternative
has two attributes:

• The localized title
• The alternatives value that will be used

when setting the Form Element’s value

Yes, at least
two
alternatives
must be
given

Table 17: Element "drop_box”, “multi_select”, “check_box”, “radio_button" Options

Example

Version 2.0.42 clickworker Page 32 of 63

{
 type: “drop_box”,
 title: “Please select a language”,
 item_code: “selected_language”,
 options: [{
 code: “alternatives”,
 value: [{
 titles: {
 en: “German”,
 de: “Deutsch”
 },
 value: “de”
 },{
 titles: {
 en: “French”,
 de: “Französisch”
 },
 value: “fr”
 }]
 }]
}

Task Template
In order to submit work to Clickworker through the API, the customer must provide information on how
his request is structured and in which form results are expected back.
For example, one customer might want to order a text using our TextCreate product, which should be
structured using a title section and a content section, while another customer might need the text to be
structured using title, abstract, and content sections.

Similarly, one customer might provide a list of URLs of company websites when using our product
AddressResearch, while another customer might supply the company name and address for
verification using the AddressResearch product.

TaskTemplates are used to define input and result structures, as well as to specify additional
parameters required to fulfill a task, such as the target language for an article.
For each input and result field, additional options can be supplied to control the presentation of each
field. Constraints, such as whether a field is optional or mandatory, can also be supplied.

To summarize, a Task Template serves multiple purposes:

• Select and configure an existing product by using its defined Product Attributes.
• Define how Tasks are presented to the clickworker using Form Elements
• Select or exclude clickworkers from certain Tasks using Clickworker List references.

Version 2.0.42 clickworker Page 33 of 63

Attributes
Name Type Access Description
href URI r/- The unique resource identifier
code String r/- The symbolic Task Template code
name String r/w A short text helping the customer identify the

purpose of the Template
titles Localized

String
r/w A short text used when presenting tasks to

clickworkers (either as a list or in detail)
descriptions Localized

Text
r/w A more extensive text containing a task

summary that is presented to the clickworker.
product Product r/w The referenced product and its configuration
form Form r/w The embedded form and its configuration.
is_draft Boolean r/- An indicator as to whether any tasks already

use this Task Template.

Table 18: Task Template Entity Attributes

Representation
• Index View
task_templates: [{
 link: [{
 href: “[endpoint]/customer/task_templates/${code}”,
 rel: “self”,
 type: “application/json”
 }],
 name: “${name}”,
 product: {
 link: [{
 href: “[endpoint]/products/${product_code}”,
 rel: “product”,
 type: “application/json”
 }],
 },
 is_draft: ${is_draft}
}]

• Detail View
task_template: {
 link: [{
 href: “[endpoint]/customer/task_templates/${code}”,
 rel: “self”,
 type: “application/json”
 }],
 code: “${code}”,
 name: “${name}”,
 titles: {
 ”$<de|en|fr|…>”: “${title}”
 },
 descriptions: {
 ”$<de|en|fr|…>”: “${description}”
 },
 product: {
 link: [{
 href: “[endpoint]/products/${product_code}”,
 rel: “product”,
 type: “application/json”
 }],

Version 2.0.42 clickworker Page 34 of 63

 attributes: […]
 },
 form: […],
 is_draft: ${is_draft}
}

Operations

Index Registered Task Templates
Indexing registered Task Templates will produce a brief overview.

Request
Request line:
 GET [endpoint]/customer/task_templates/
Request parameter:
 (none)
Request body:
 (empty)

Response
Response status:

• 200, if the request was successfully processed, even if no Task Templates were found
Response body:

task_templates_response: {
 request_status: ... ,
 task_templates: [{
 link: [{
 href: “/api/marketplace/v2/customer/task_templates/translate”,
 rel: “task_template”,
 type: “application/json”
 }],
 name: “Übersetzungstemplate”,
 product: {
 link: [{
 href: “/api/marketplace/v2/products/TextCreate”,
 rel: “product”,
 type: “application/json”
 }]
 },
 is_draft: false
 }]
}

Create a new Task Template

Request
Request line:

POST [endpoint]/customer/task_templates/
Request parameter:
 (none)
Request body:

• Example

Version 2.0.42 clickworker Page 35 of 63

task_template: {
 code: “tpl_text_create_keywords_en”,
 name: “Standard Text Creation Template (English)”,
 titles: {
 en: “Please write a message with keywords”
 },
 descriptions: {
 en: “You are required to write a short English message, containing at least
50 words, with a keyword in it.”
 },
 product: {
 link: [{
 href: “/api/marketplace/v2/products/TextCreateWithKeywords”
 rel: “product
 type: “application/json”
 }],
 attributes: [{
 code: “textcreatewithkeywords_language”,
 value: “en”
 },{
 code: “textcreatewithkeywords_text_length”,
 value: “10#55”
 },{
 code: “textcreatewithkeywords_proof_read”,
 value: “textcreate_proof_no”
 }]
 },
 form: {
 "elements": [
 {
 type: “text_field”,
 titles: {
 en: “Topic”
 },
 item_code: “topic”,
 is_output: false
 },{
 type: “text_area”,
 titles: {
 en: “Your Message”
 },
 item_code: “result”,
 is_output: true,
 is_mandatory: true,
 options: [{
 code: “min_length”,
 value: “50”
 },{
 code: “max_length”,
 value: “150”
 }],
 },{
 type: “keyword”,
 item_code: “keyword_a”,
 is_output: false,
 is_mandatory: true,
 options: [{
 code: “min_occurrence_ref”,

Version 2.0.42 clickworker Page 36 of 63

 value: “keyword_a_min”
 },{
 code: “max_occurrence_ref”,
 value: “keyword_a_max”
 },{
 code: “reference_code”,
 value: “all”
 }]
 }
]
 }
}

Response
Response status:

• 200, if the Task Template was successfully created
• 409, if a Task Template of the given code already exists

Response body:
 (See “View Task Template Details” for examples)

View Task Template Details

Request
Request line:
 GET [endpoint]/customer/task_templates/${code}
Request parameter:

Name Type Synopsis Mandatory
code String The Task Templates code as defined by the

customer at the time of creation
Yes

Request body:
 (empty)

Response
Response status:

• 200, if the request was successfully handled
• 404, if the addressed Task Template does not exist

Response body:
• Example
task_template_response: {
 request_status: { … },
 task_template: {
 link: [{
 href: “/api/marketplace/v2/customer/task_templates/
tpl_text_create_keywords_en”,
 rel: “self”,
 type: “application/json”
 }],
product: {
 link: [{
 href: “/api/marketplace/v2/products/TextCreateWithKeywords”
 rel: “product
 type: “application/json”

Version 2.0.42 clickworker Page 37 of 63

 }],
 attributes: [{
 code: “textcreatewithkeywords_language”,
 value: “en”
 },{
 code: “textcreatewithkeywords_text_length”,
 value: “10#55”
 },,{
 code: “textcreatewithkeywords_proof_read”,
 value: “textcreate_proof_no”
 }]
 },
 form: {
 "elements": [
 {
 type: “text_field”,
 titles: {
 en: “Topic”
 },
 item_code: “topic”,
 is_output: false
 },{
 type: “text_area”,
 titles: {
 en: “Your Message”
 },
 item_code: “result”,
 is_output: true,
 is_mandatory: true,
 options: [{
 code: “min_length”,
 value: “50”
 },{
 code: “max_length”,
 value: “150”
 }],
 },{
 type: “keyword”,
 item_code: “keyword_a”,
 is_output: false,
 is_mandatory: true,
 options: [{
 code: “min_occurrence_ref”,
 value: “keyword_a_min”
 },{
 code: “max_occurrence_ref”,
 value: “keyword_a_max”
 },{
 code: “reference_code”,
 value: “all”
 }]
 }
]
 }
}

Table 18

Version 2.0.42 clickworker Page 38 of 63

Update Task Template

Request
Request line:
PUT [endpoint]/customer/task_templates/${code}
Request parameter:

Name Type Synopsis Mandatory
code String The Task Templates code as defined by the

customer at the time of creation
Yes

Request body:
• JSON Example

task_template: {
 name: “Standard Text Creation Template (English)”,
 titles: {
 en: “Please write a message with keywords”
 },
 descriptions: {
 en: “You are required to write a short English message, containing at least
50 words, with a keyword in it.”
 }
}

Response
Response status:

• 200, if the Task Template was successfully updated
• 409, if a Task Template has invalid attributes

Response body:
 (See “View Task Template Details” for examples)

<task_template>
 <titles>
 <en>Please write a short SEO message</en>
 <de>Bitte verfassen Sie einen SEO Text</de>
 </titles>
</task_template>
{
 product: {
 link: [{
 href: “/api/marketplace/v2/products/text_create”
 }],
 attributes: [{
 code: “textcreate_language”,
 value: “en”
 }]
 }
}

Delete a Task Template
When deleting a Task Template, it must not be in use by any Task (regardless of the Task’s state).

Request
Request line:
 DELETE [endpoint]/customer/task_templates/${code}

Version 2.0.42 clickworker Page 39 of 63

 or
 POST [endpoint]/customer/task_templates/${code}?_method=DELETE
Request parameter:

Name Type Synopsis Mandatory
code String The Task Template’s code, as defined by the

customer at the time of creation
Yes

Request body:
 (Empty)

Response
Response status:

• 204, if the request could be successfully handled
• 404, if the given resource was not found
• 409, if the Task Template is in use by Tasks.

Response body:
(Empty)

Add Clickworker to Task Template blacklist
Clickworkers on the blacklist are not allowed to work on this task. When removing the valid_until
parameter the Clickworker will stay on the blacklist indefinitely.

Request
Request line:

PUT [endpoint]/customer/task_templates/${code}/blacklist
Request parameter:

Name Type Synopsis Mandatory
code String The Task Templates code as defined by the

customer at the time of creation
Yes

Request body:
• JSON Example

blacklist: {
 clickworker_ids: [36, 40],
 valid_until: “2017-06-13”
}

Response
Response status:

• 200, if the Clickworkers were successfully added to the blacklist
Response body:
 (Empty)

Task
A Task represents a specific work item (payload of work) to be processed and delivered by
clickworkers, such as a test to be written, or a single address to be researched. Before a task can be
submitted, a Task Template must be defined, specifying the details of how the task should be fulfilled.
While the Task Template defines aspects that are common to all Tasks (like selected product, input

Version 2.0.42 clickworker Page 40 of 63

form, etc.) a Task carries the actual payload. The Task’s data can roughly be separated into two
sections:

1. Instructional data is the input presented to the clickworker (like text to translate, keywords,
instructions, etc.)

2. Result fields contain the final results of the task resolution (like translated text, created text,
research results)

Attributes
Name Type Access Description
id Integer r/- The Task identifier
href URI r/- The Task’s unique resource identifier
Cloned_task URI r/- Show the cloned task if presend
customer_ref String r/w The customer may use this attribute to transport

internal references.
template URI r/- The Task Template’s unique resource identifier.

Contains a reference to the selected product.
amount numeric r/- The amount after tax in the customer's currency

for this task. Price may vary depending on the
input parameters (e.g. length of text, quality
assurance, etc.)

currency String r/- The ISO currency symbol for all amount data
net_amount numeric r/- The amount before tax in the customer's

currency for this task. Price may vary depending
on the input parameters (e.g. length of text,
quality assurance, etc.)

tax_amount numeric r/- The tax amount for this Task
state String r/w The current Task state. See section “Task

States” for details.
input List r/c A list of items to be used as input data. Every

item has two attributes:
1. The item’s code (item_code)
2. The item’s content (item_content)

result List r/- A list of items to be used as result data. Every
item has two attributes:

1. The item’s code (item_code)
2. The item’s content (item_content)

Notifications
(optional)

List r/c A list of notification instances to automatically
register after Task creation.

progress_logs List r/- A record of the Task’s progress. Every entry
provides a timestamp (log_timestamp) and a
code (log_code), suitable for automatic
processing.

Table 19: Task Entity Attributes

Task Result Additions
The result attribute contains input that was created by clickworkers using the Form Elements defined
by the associated Task Template. In addition, service and statistical information may be added by the
system.

Task States
The Task State indicates the current status of the Task. It is derived from a more extensive set of
internal states but mapped to the following “public” states:

Version 2.0.42 clickworker Page 41 of 63

• Unconfirmed
The task has been created but needs to be confirmed by the customer.

• Confirmed
The task has been confirmed by the customer and is ready for queuing.

• Queued
The task is waiting for clickworkers to apply for the associated jobs

• Running
Clickworkers are currently working on the task’s jobs.

• Cancelled
The task has been cancelled by the customer

• Feedback
The task requires feedback – such as a buyoff by the customer.

• Finished
The task is finished and contains the result data.

• Deleted
The task has been marked as deleted and will not be listed in index requests any more.
However, it is still available as long as it is referenced by other entities, likes Jobs or
Notifications.

Representation
• Detail view
{
 link: [{
 href: “[endpoint]/customer/tasks/${id}”,
 rel: “self”,
 type: “application/json”
 }],
 id: ${id},
 customer_ref: “${customer_ref}”,
 template: {
 link: [{
 href: ”[endpoint]/customer/task_templates/${template}”,
 rel: “template”,
 type: “application/json”
 }],
 product: {
 link: [{
 href: “[endpoint]/products/${product_code}”,
 rel: “product”,
 type: “application/json”
 }]
 }
 },
 net_amount: ${net_amount},
 tax_amount: ${tax_amount},
 amount: ${amount},
 currency: “${currency}”,
 state: “${state}”,
 input: {
 items: [{
 “code”: “${item_code}”,
 “content”: “${item_content}”
 }]
 },

Version 2.0.42 clickworker Page 42 of 63

 result: {
 items: [{
 “code”: “${item_code}”,
 “content”: “${item_content}”
 }]
 },
 notifications: [{
 link: [{
 href: ”[endpoint]/customer/tasks/${task_id}/notifications/${id}”,
 rel: “self”,
 type: “application/json”
 }],
 event: “${event}”,
 callback_url: “${callback_url}”,
 callback_method: “${callback_method}”,
 payload_format: “${payload_format}”
 }],
 progress_logs: [{
 timestamp: “${log_timestamp}”,
 code: “${log_code}”
 }]
}

• Index view
{
 link: [{
 href: “[endpoint]/customer/tasks/${id}",
 rel: “self”,
 type: “application/json”
 }],
 customer_ref: “${customer_ref}”,
 template: {
 link: [{
 href: ”[endpoint]/customer/task_templates/${template}”,
 rel: “template”,
 type: “application/json”
 }],
 product: {
 link: [{
 href: “[endpoint]/products/${product_code}”,
 rel: “product”,
 type: “application/json”
 }]
 }
 },
 state: “${state}”
}

Operations

List Tasks

Request
Request line:
 GET [endpoint]/customer/tasks/
Request parameter:

Name Type Synopsis Mandatory

Version 2.0.42 clickworker Page 43 of 63

state String Filters tasks by specified state. List of possible
values, see above.

No

from Date Filters tasks by created_at attribute from
specified date. Expected format is dd.mm.yyyy

No

to Date Filters task by created_at attribute to specified
date. Expected format is dd.mm.yyyy

No

Request body:
 (empty)

Response
Response status

• 200, if the request could be successfully handled (even if no tasks were found)

Response body

tasks_response: {
 request_status: ... ,
 tasks: [{
 link: [{
 href: “[endpoint]/customer/tasks/123",
 rel: “task”,
 type: “application/json”
 }],
 customer_ref: “translate_run 0”,
 template: {
 link: [{
 href: “/api/marketplace/v2/customer/task_templates/translate_en_de”,
 rel: “task_template”,
 type: “application/json”
 }],
 product: {
 link: [{
 href: “/api/marketplace/v2/products/TextTranslate",
 rel: “product”,
 type: “application/json”
 }]
 },
 state: “Running”
 },{
 link: [{
 href: “[endpoint]/customer/tasks/456",
 rel: “task”,
 type: “application/json”
 }],
 customer_ref: “translate_run 0”,
 template: {
 link: [{
 href: “/api/marketplace/v2/customer/task_templates/translate_en_de”,
 rel: “task_template”,
 type: “application/json”
 }],
 product: {
 link: [{
 href: “/api/marketplace/v2/products/TextTranslate",
 rel: “product”,
 type: “application/json”

Version 2.0.42 clickworker Page 44 of 63

 }]
 }
 },
 state: “Queued”
 }]
}

Search Tasks by Customer Reference

Request
Request line:
 GET [endpoint]/customer/tasks/search
Request parameter:

Name Type Synopsis Mandatory
customer_ref String Filters tasks by specified customer_reference. If

parameter is not specified, it filters tasks by
customer_reference = NULL

No

Request body:
 (empty)

Response
Response status

• 200, if the request could be successfully handled (even if no tasks were found)

Response body

tasks_response: {
 request_status: ... ,
 tasks: [{
 link: [{
 href: “[endpoint]/customer/tasks/123",
 rel: “task”,
 type: “application/json”
 }],
 customer_ref: “translate_run 0”,
 template: {
 link: [{
 href: “/api/marketplace/v2/customer/task_templates/translate_en_de”,
 rel: “task_template”,
 type: “application/json”
 }],
 product: {
 link: [{
 href: “/api/marketplace/v2/products/TextTranslate",
 rel: “product”,
 type: “application/json”
 }]
 },
 state: “Running”,
 created_at: “2012-08-28T12:56:08+01:00”
 },{
 link: [{
 href: “[endpoint]/customer/tasks/456",
 rel: “task”,
 type: “application/json”

Version 2.0.42 clickworker Page 45 of 63

 }],
 customer_ref: “translate_run 0”,
 template: {
 link: [{
 href: “/api/marketplace/v2/customer/task_templates/translate_en_de”,
 rel: “task_template”,
 type: “application/json”
 }],
 product: {
 link: [{
 href: “/api/marketplace/v2/products/TextTranslate",
 rel: “product”,
 type: “application/json”
 }]
 }
 },
 state: “Queued”,
 created_at: “2012-08-28T12:50:01+01:00”
 }]
}

Create Task
A customer makes new work available by creating a task. Tasks are automatically confirmed and
distributed to the crowd for resolution.

Customers can choose to receive notifications upon task completion.

Request
Request line:
 POST [endpoint]/customer/tasks/
Request parameter:
 (Common only)
Request body:

• Example
task: {
 customer_ref: “task_batch 1”,
 template: {
 link: [{
 href: “/api/marketplace/v2/customer/task_templates/translate_en_de”,
 rel: “task_template”,
 type: “application/json”
 }]
 },
 input {
 items: [{
 code: “source”,
 content: “English Term”
 }]
 },
 notifications: [{
 event: “CUSTOMER_INPUT_REQUIRED”,
 callback_url: “http://notification.example.com/”,
 callback_method: “POST”,
 payload_format: “JSON”
 }]
}

Version 2.0.42 clickworker Page 46 of 63

Response
Response status

• 201, if the task has successfully been created
• 400, if the referenced Task Template does not exist

Response body
 (See example in section “View Task Details”)

View Task Details

Request
Request line:
 GET [endpoint]/customer/tasks/${id}
Request parameter:

Name Type Synopsis Mandatory
id Integer The automatically generated Task id as

returned by the Create Task operation
Yes

show_cloned_task Boolean If is true and the the task has cloned task,
than the data of the cloned task will be
shown.

No

Request body:
 (Empty)

Response
Response status

• 200, if the requested resource was found
• 404, if the requested resource was not found or the given customer id is not associated with

the detected credentials
Response body:

• Example
task_response: {
 request_status: …,
 task: {
 link: [{
 href: “/api/marketplace/v2/customer/tasks/123”,
 rel: “self”,
 type: “application/json”
 }],
 id: 123,
 cloned_task: {
 href: “/api/marketplace/v2/customer/tasks/234”,
 rel: “self”,
 type: “application/json”
 },
 customer_ref: “translate batch a”,
 template: {
 link: [{
 href: “/api/marketplace/v2/customer/task_templates/translate_en_de”,
 rel=”task_template”,
 type=”application/json”
 }],
 product: {
 link: [{
 href: “/api/marketplace/v2/products/TextTranslate”,
 rel=”product”,

Version 2.0.42 clickworker Page 47 of 63

 type=”application/json”
 }]
 }
 },
 net_amount: 0.00,
 tax_amount: 0.00,
 amount: 0.00,
 currency: “EUR”,
 state: “Created”,
 input: {
 items: [{
 code: “source”,
 content: “English Term”
 }]
 },
 result: {},
 notifications: [],
 progress_logs: []
 }
}
<task>
 <state>Confirmed</state>
</task>
task: {
 state: “Confirmed”
}

Delete Task

Request
Request line
 DELETE [endpoint]/customer/tasks/${ id}
 or
 POST [endpoint]/customer/tasks/${ id}?_method=DELETE

Request parameter:

Name Type Synopsis Mandatory
id Integer The auto-computed Task id as returned by the

Create Task operation
Yes

Request body:
 (empty)

Response
Response status:

• 204, if the request could be successfully handled
• 404, if the given resource was not found
• 409, if the task could not be deleted

Response body:
 (empty)

Version 2.0.42 clickworker Page 48 of 63

Clickworker Bonus Payment
A customer has a way to make bonus payments to clickworkers.
NOTE: 40% of the amount will be added to the basic payment.

Request
Request line:
 POST [endpoint]/customer/tasks/${ id}/grant_bonus
Request parameter:
Name Type Synopsis Mandatory
id Integer The auto-computed Task id as returned by the

Create Task operation
Yes

Request body:

• Example
bonus: {
 amount: 30.0,
 clickworker_id: 2,
 comment: “Clickworker bonus payment”
}

Response
Response status

• 201, if the payment has successfully been created
• 422, if the some validation error has occurred

Response body
 (See example in section “View Task Details”)

• Example
grant_bonus_response: {
 request_status: {
 id: “qcscPfWiEqKsOGLP1kfFVHQKJbQ=”,
 valid: true,
 status_code: 201,
 status_text: “Created”,
 },
 bonus: {
 amount: 30.0,
 clickworker_id: 2,
 comment: “Clickworker bonus payment”
 }
}

Notification
Notifications are callbacks to the customer’s system that keep customers informed of certain events
related to a specific task. Notifications for the following events can be configured:

• TASK_COMPLETED: This event is triggered when all work related to the task, including the
customer’s review, has been completed.

• TASK_TIMEDOUT: This event is triggered when the maximum duration or due date for the
task has elapsed and the task has not been completed.

• CUSTOMER_INPUT_REQUIRED: This event is triggered when additional input is required
from the customer, such as approval of an article.

Version 2.0.42 clickworker Page 49 of 63

A notification can be registered during task creation.

Attributes
Name Type Access Description
id Integer r/- The Notification id
href URI r/- The Notification unique resource identifier
event String r/w The symbolic event name. The following codes

are defined:
• TASK_COMPLETED
• TASK_TIMEDOUT
• CUSTOMER_INPUT_REQUIRED

callback_url URL r/w The callback URL
callback_method String r/w The HTTP method, one of GET or POST
payload_format String r/w Payload format indicator, either XML or JSON.

Only supported if method is set to POST.

The actual payload will be a copy of the selected
Task entity in the requested format.

Table 20: Notification Entity Attributes

Representation
notification: {
 link: [{
 href: ”[endpoint]/customer/tasks/${task_id}/notifications/${id}”,
 rel: “self”,
 type: “application/json”
 }],
 event: “${event}”,
 callback_url: “${callback_url}”,
 callback_method: “${callback_method}”,
 payload_format: “${payload_format}”
}

Notification Payload
The Notification sent to the given “callback url” will contain the following information:

1. The event code, as described above
2. The URI of the task that triggered the event

If ${callback_method} was set to POST, the Notification payload will be the only element in the body of
the request. If the method was set to GET, the notification will be a URL-compliant serialization of the
data and become the value of a query string parameter named “payload”.

Please note that because of URL length restrictions, the use of the POST method is highly
recommended!

• Example
notification: {
 link: [{
 href: ”/api/marketplace/v2/customer/notifications/1234”,
 rel: “self”,
 type: “application/json”

Version 2.0.42 clickworker Page 50 of 63

 }],
 event: “CUSTOMER_INPUT_REQUIRED”,
 task: {
 link: [{
 href: “/api/marketplace/v2/customer/tasks/1234”,
 rel: “task”,
 type: “application/json”
 }]
 }
}

Operations

List Registered Notifications
There are two ways to index Notifications associated with the customer:

1. View all Notification instances that are associated with the customer
2. View only Notifications that are associated with a specific task

Request
Request line:
 GET [endpoint]/customer/tasks/${id}/notifications/
 or
 GET [endpoint]/customer/notifications/
Request parameter:

Name Type Synopsis Mandatory
id Integer The auto-generated Task id, as returned by

the Create Task operation
Yes

Request body:
 (empty)

Response
Response status:

• 200, if the request could be handled successfully (even if there are no notifications)
• 404, if the addressed Task does not exist

Response body:
• Example
notification_response: {
 request_status: ... ,
 notifications: [{
 link: [{
 href: “/api/marketplace/v2/customer/tasks/1234/notifications/1”,
 rel: “self”,
 type: “application/json”
 }],
 event: “TASK_COMPLETED”,
 callback_url: “http://notification.example.com/”,
 callback_method: “POST”,
 payload_format: “JSON”,
 author_id: “111”,
 task_id: “1234”
 }]
}
<notification>
 <event>TASK_COMPLETED</event>

Version 2.0.42 clickworker Page 51 of 63

 <callback_url>http://notification.example.com/</callback_url>
 <callback_method>POST</callback_method>
 <payload_format>XML</payload_format>
</notification>
notification: {
 event: “TASK_COMPLETED”,
 callback_url: “http://notification.example.com/”,
 callback_method: “POST”,
 payload_format: “JSON”
}
<notification_response>
 <request_status>…</request_status>
 <notification>
 <link href=“/api/marketplace/v2/customer/tasks/123/notifications/1”
 rel=”self” type=”application/xml” />
 <event>TASK_COMPLETED</event>
 <callback_url>http://notification.example.com/</callback_url>
 <callback_method>POST</callback_method>
 <payload_format>XML</payload_format>
 </notification>
</notification_response>
notification_response: {
 request_status: { … },
 notification: {
 link: [{
 href: “/api/marketplace/v2/customer/tasks/123/notifications/1”,
 rel: “self”,
 type: “application/json”
 }],
 event: “TASK_COMPLETED”,
 callback_url: “http://notification.example.com/”,
 callback_method: “POST”,
 payload_format: “JSON”
 }
}

Job
Whenever the customer confirms a new task, it is accomplished based on a predefined, product-
specific workflow. The steps of this workflow are called “Jobs.” This is illustrated by the following
workflow, consisting of three Jobs:

1. “create” performed by a clickworker writing a text according to a task’s specifications
2. “review” performed by another clickworker who reviews the results of the first job
3. “signoff” performed by the customer, who approves or declines the results.

A task is completed when the entire workflow is completed. This occurs when all jobs are finished.

Using the Marketplace API, customers can only see and manipulate jobs that are assigned to them.
Usually, these are jobs for signing off on the results. The product details contain the relevant meta
information about the job’s input and results.

Attributes
Name Type Access Description
href URI r/- The Job resource identifier

Version 2.0.42 clickworker Page 52 of 63

id String r/- The Job Id
task Task r/- The Task with which this Job is associated
customer_ref String r/- Copied from the associated Task
items List r/- The Job’s payload, a combination of the task

input data provided by the customer and the
clickworker output

form List r/- A list of Form Elements that visualize the
required and supported input items (see below)

input List r/w A list of items supplied for job completion. The
purpose, format, and the available alternatives (if
any) are described by the form attribute above.

Table 21: Job Entity Attributes

Representation
• Detail View
job: {
 link: [{
 href: “[endpoint]/customer/jobs/${id}”,
 rel: “self”,
 type: “application/json”
 }],
 id: ${id},
 task: {
 link: [{
 href: “[endpoint]/customer/tasks/${task}”,
 rel: “task”,
 type: “application/json”
 }]
 },
 items: [{
 code: “${item_code}”,
 content: “${item_content}”
 }],
 form: [{
 type: “Fehler! Verweisquelle konnte nicht gefunden werden.”,
 titles: {
 “$<en|fr|de>”: “${title}”
 },
 descriptions: {
 “$<en|fr|de>”: “${description}”
 },
 item_code: “${item_code}”,
 is_output: ${is_output},
 is_mandatory: ${is_mandatory},
 options: [{
 code: “${opt_code}”,
 value: ${opt_value}
 }]
}],
 input: {
 items: [{
 code: “${item_code}”,
 content: “${item_content}”
 }]
 }
}

Version 2.0.42 clickworker Page 53 of 63

• Index View
job: {
 link: [{
 href: “[endpoint]/customer/jobs/${id}”,
 rel: “self”,
 type: “application/json”
 }],
 task: {
 link: [{
 href: “[endpoint]/customer/tasks/${task}”,
 rel: “task”,
 type: “application/json”
 }]
 }
}

Operations

Index Registered Jobs
There are two ways to index Jobs associated with the customer’s account:

1. View all Job instances that are assigned to a customer
2. Only view Jobs that are associated with a specific Task

Request
Request line:
 GET [endpoint]/customer/jobs/
 or
 GET [endpoint]/customer/tasks/${id}/jobs/
Request parameter:

Name Type Synopsis Mandatory
id Integer The auto-generated Job id. Yes

Request body:
 (empty)

Response
Response status:

• 200, if the index was built (even if it does not contain any Jobs)
• 404, if the addressed Task does not exist

Response body:
• Example
jobs_response: {
 request_status: { … } ,
 jobs: [{
 link: [{
 href: “/api/marketplace/v2/customer/jobs/1234”,
 rel: “job”,
 type: “application/json”
 }],
 task: [{
 href: “/api/marketplace/v2/customer/tasks/5678”,
 rel: “task”,
 type: “application/json”
 }]
 }]

Version 2.0.42 clickworker Page 54 of 63

}

View Job Details

Request
Request line:
 GET [endpoint]/customer/tasks/${task_id}/jobs/${id}
Request parameter:

Name Type Synopsis Mandatory
task_id Integer The auto-generated Task id, as returned by

the Create Task operation
Yes

id Integer The auto-generated Job id, as returned by the
Create Notification operation

Yes

Request body:
 (empty)

Response
Response status:

• 200, if the Job was found
• 404, if the Job or the Task was not found

Response body:
• Example
job_response: {
 request_status: ... ,
 job: {
 link: [{
 href: “/api/marketplace/v2/customer/jobs/1234”,
 rel: “self”,
 type: “application/json”
 }],
 id: 1234,
 task: {
 link: [{
 href: “/api/marketplace/v2/customer/tasks/456”
 rel: “task”
 type: “application/json”
 }]
 },
 items: [{
 code: “source”,
 content: “English Term”
 },{
 code: “target”,
 content: “deutscher Begriff”
 }]
 }
}

Update Jobs
To update a Job, the input attribute’s content must match the structure of the embedded form.

Request

Version 2.0.42 clickworker Page 55 of 63

Request line:
 PUT [endpoint]/customer/jobs/${id}
 or
 POST [endpoint]/customer/jobs/${id}?_method=PUT
Request parameter:

Name Type Synopsis Mandatory
task_id Integer The auto-generated Task id, as returned by

the Create Task operation
Yes

id Integer The auto-generated Job id. Yes

Request body:

• Example
job: {
 input: {
 items: [{
 code: "accepted",
 content: "1"
 },{
 code: "grade_gr",
 content: "2"
 },{
 code: "grade_gr_comment",
 content: "Here is my grade_gr comment"
 },{
 code: "grade_sppu",
 content: "2"
 },{
 code: "grade_sppu_comment",
 content: "Here is my spelling and punctuation comment"
 },{
 code: "grade_sest",
 content: "2"
 },{
 code: "grade_sest_comment",
 content: "Here is my style comment"
 },{
 code: "grade_st",
 content: "2"
 },{
 code: "grade_st_comment",
 content: "Here is my sentence structure comment "
 },{
 code: "grade_cocl",
 content: "2"
 },{
 code: "grade_cocl_comment",
 content: "Here is my comprehension and clarity comment"
 },{
 code: "grade_foin",
 content: "2"
 },{
 code: "grade_foin_comment",
 content: "Here is my follow instructions comment "
 },{
 code: "grade_sein",
 content: "2"

Version 2.0.42 clickworker Page 56 of 63

 },{
 code: "grade_sein_comment",
 content: "Here is my selection of information comment"
 },{
 code: "comment",
 content: "Text is ok."
 }
]
 }
}

Response
Response status:

• 200, if the request was successfully handled
• 404, if the Job does not exist or the Task does not exist.
• 409, if the input items provided by the customer do not match the form definition

Response body:
 (Identical to “View Job Details,” as described above)

Entity Relationship Diagram

Version 2.0.42 clickworker Page 57 of 63

API Principles

Managing resources using REST
Representational State Transfer2 (REST) is an architectural principle for distributed systems, such as
the World Wide Web. Applications and services following the REST principle apply the following
concepts:

• Every resource (and every resource type) is directly reachable using a Uniform Resource
Identifier (URI3), usually a canonical URL.

• A single resource can have multiple representations, like HTML, XML, or text. This allows
clients to use various tools (like browsers) to handle these resources.

• No session state is maintained on the server. Clients must provide all information necessary
to handle the given request. This allows atomic operations and scalable services.

REST makes extensive use of the Hypertext Transport Protocol (HTTP) for transporting resource
representations. Operations are called using HTTP methods and results are reported using HTTP
status codes.

URI
Using REST, a resource is identified by a URI. A URI consists of various parts. The following example
demonstrates these parts and their purpose:

https://api.clickworker.com/marketplace/v2/products/TextCreate

The following parts of the URI are static and consistent throughout a given API release. In the
following examples, this part is referenced by a pattern as [endpoint]:

• https:// identifies the protocol to use (HTTP over SSL)
• api.clickworker.com is the service host’s DNS name
• /marketplace/v2 is the service’s context, including an API version marker

The last parts of the URI are specific to the managed entities.

• /products identifies the resource type
• /TextCreate is the resource’s id (a product code in this example)

As a result, details on the product with code TextCreate are returned.

Representing Resources Using XML or JSON
As stated above, a single resource may have multiple representations. Currently, the clickworker.com
Marketplace API supports Extensible Markup Language (XML) and JavaScript Object Notation
(JSON).

Entities may support two different view modes, automatically chosen by the system:

1. A “detail” view that represents the entity and all of its public attributes. This view is selected
when an entity is requested directly.

2 See http://en.wikipedia.org/wiki/Representational_State_Transfer for more.
3 See http://en.wikipedia.org/wiki/Uniform_Resource_Identifier for more.

Version 2.0.42 clickworker Page 58 of 63

2. An “index” view that represents the entity with a limited set of public attributes. This view is
chosen when an entity is requested indirectly, e.g. as part of a collection.

Clients may call one of these representations by providing a valid HTTP Accept header:

• To request a resource as XML, the Accept header must use a MIME-type of “application/xml”
• To request a resource as JSON, the Accept header must use a MIME-type of

“application/json”

When clients send json or xml documents as body of post or put requests, the Content-Type Header
must be set accordingly:

• To send a XML document, the Content-Type must be set to “application/xml”
• To send a JSON document, the Content-Type must be set to “application/json”

Selecting a resource representation by using a virtual file extension (like “.xml” or “.json”) is not
supported, as it violates the concept of a single resource URI.

XML documents make use of a published Document Type Definition (DTD) and optionally an XML
Schema. In addition to resource-specific elements and attributes, globally defined attributes (like
xml:lang) and attributes from other XML namespaces (like xlink:href) may be used.

Calling operations using HTTP methods
The Hypertext Transport Protocol (HTTP) defines 8 different request methods4:

• GET
• POST
• PUT
• DELETE
• HEAD
• OPTIONS
• CONNECT
• TRACE

Of this set of HTTP “verbs,” GET, POST, PUT and DELETE are supported by the Clickworker
Marketplace API. These verbs are used to call predefined operations on addressed resources.

Due to issues surrounding firewall restrictions and legacy clients, HTTP PUT and DELETE methods
may be encapsulated using HTTP POST. To do this, add an additional URL parameter called
“_method” to the request, using the HTTP method name in uppercase as the value.

GET: Display or index resources
Calling the GET method will produce two different results:

1. If called on a resource type instead of an identified resource, an index of available resources
of the requested type will be returned. The index usually contains a reduced set of resource
attributes, along with the URI of the indexed resource.

2. If called on an identified resource, the resource will be printed in detail.

4 See http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html for more.

Version 2.0.42 clickworker Page 59 of 63

Usually, the request will return the HTTP status code 200 (“OK”) and contain the requested resource
(or resource index) as its body. See Table 1 for details on available response codes.

POST: Create a new resource
The POST method is used to create a new resource using the addressed resource’s type. POST must
only be called on URIs specifying a resource type. To modify an existing resource, the PUT method
should be used.

Usually, the request will result in an HTTP status code of 201 (“Created”) and contain details on the
created resource in the response’s body.

PUT: Update an existing resource
To modify an existing resource, a PUT request must be sent to the server. The request must use the
URI of the resource being modified. The resource is updated with the request’s body data, which
usually contains a reduced representation of the resource. It only contains attributes that can be
updated. For example, the resource identifier cannot be altered after the resource has been created.

Usually, the request will result in an HTTP status code of 200 (“OK”) and contain details on the
updated resource in the response’s body.

DELETE: Remove and existing resource
To remove an existing resource, the DELETE method must be called on the resource’s URI.

Usually, the request will result in an HTTP status code of 204 (“No Content”) and an empty response
body, since the resource is not available any more.

Reporting status using HTTP codes
HTTP already defines an extensive set of numeric status codes that are suitable to report the outcome
of request processing. They can be divided into roughly three groups:

• Success codes
• Client error codes
• Server error codes

API operations can report the status in two different ways:

1. By using the predefined HTTP header “Status” (this is the default).
2. By encapsulating the actual operation outcome inside the Request Status entity. The HTTP

status code will always be 200 OK (unless a server error occurs). To enable this behaviour, a
special URL parameter named “suppress_http_status” must be set to value “1”.

The following tables display the status codes that are used by the Clickworker Marketplace API.

Code Text Usage
200 OK The request was handled successfully and created a response that is

available to the client. This status code is mostly used for GET and PUT
operations.

Version 2.0.42 clickworker Page 60 of 63

201 Created The request was handled successfully and has created a new resource
that is available to the client. This status code is mostly used for POST
operations.

204 No Content The request was handled successfully, but has not created any content.
This status code is mostly used for DELETE operations.

Table 22: Success Codes

Code Text Usage
400 Bad Request The request cannot be handled due to formal errors. The client should not

repeat the request without making changes.
401 Authorisation

Required
Access to the requested resource requires authentication, but no credentials
were provided. See section “Authentication and Transport Security” for details
on how to authenticate.

403 Forbidden Access to the requested resource is not allowed due to invalid credentials. See
section “Authentication and Transport Security” for details on how to
authenticate.

404 Not Found The requested resource is not available
405 Method Not

Allowed
The operation requested (GET, POST, PUT, DELETE) is not allowed for the
addressed resource. An HTTP header (“Allow”) is provided to name the valid
methods.

406 Not
Acceptable

The addressed resource cannot be represented in the format requested by the
client. This code is returned if the resource was requested in a representation
other than XML or JSON.

409 Conflict The request could not be completed due to a conflict with the current state of
the resource. This code is returned if modifying operations are requested on
locked resources.

415 Unsupported
Media Type

The resource provided in the request’s body is in a format other than XML or
JSON. This status code can only occur for POST and PUT requests.

Table 23: Client Error Codes

Code Text Usage
500 Internal Server

Error
The server is not able to handle the request due to an internal error. An
appropriate message will be provided inside the response’s body.

501 Not
Implemented

The server does not support the functionality required to fulfill the
request. Unlike a 405, this status is reported for operations that are not
available for any resource type.

503 Service
Unavailable

The server is currently unable to handle the request due to a temporary
error or maintenance.

Table 24: Server Error Codes

Authentication and Transport Security
The Clickworker Marketplace API uses HTTP Authentication5 (“Basic Auth”) for access control. In
order to use Clickworker's crowdsourcing services through the API, you need to be registered as a
customer on www.clickworker.com.

The credentials used for API authentication are identical to the username and password used at
registration. In order to be able to access the API you need to be activated as an API user by our
support. In order to request API access please log in with your customer account and go to “Profile” /
“API access”.

5 See http://tools.ietf.org/html/rfc2617 for more.

Version 2.0.42 clickworker Page 61 of 63

To ensure data security, Clickworker’s services require the use of Secure Socket Layers (SSL).

Verifying A Client Setup
For convenience, two variants of a dedicated “Echo” service have been made available:

• Echo incoming message without authentication required
• Echo incoming message with authentication required

Calling the Echo Service

Without Authentication
To verify the availability of our services and the client’s basic communication setup, send a plain HTTP
POST request to the Echo service.

Request
Request URI:
 http://api.clickworker.com/api/marketplace/v2/echo/simple_echo
Request body:

• XML
<echo>
 <message>${message}</message>
</echo>

• JSON
echo: {
 message: “${message}”
}

Request parameter

Name Type Synopsis Mandatory
message String Message to be echoed Yes

Response
Response status:

• 200, if the request was formally correct
Response body

• XML Example
<simple_echo_response>
 <request_status>…</request_status>
 <echo>
 <message>Your Message</message>
 </echo>
</simple_echo_response>

• JSON Example
simple_echo_response: {
 request_status: …,
 echo: {
 message: “Your Message”
 }
}

Version 2.0.42 clickworker Page 62 of 63

With Authentication
Calling the echo service with authentication not only verifies basic client/server communication, but
also ensures the validity of the customer’s account.

Technically, the procedure is identical to the one without identification with one major difference:
Clients must use an SSL HTTP (https) POST request.

Request
Request URI:
 https://api.clickworker.com/api/marketplace/v2/echo/extended_echo

Request body:

• XML
<echo>
 <message>${message}</message>
</echo>

• JSON
echo: {
 message: “${message}”
}

Request parameter

Name Type Synopsis Mandatory
message String Message to be echoed Yes

Response
Response status:

• 200, if the request was formally correct
Response body

• XML Example
<entended_echo_response>
 <request_status>…</request_status>
 <echo>
 <message>Your Message</message>
 </echo>
</extended_echo_response>

• JSON Example
extended_echo_response: {
 request_status: …,
 echo: {
 message: “Your Message”
 }
}

Version 2.0.42 clickworker Page 63 of 63

Appendix
List of Tables
Table 1: Common Attributes .. 12
Table 2: Common Entity Attributes .. 13
Table 3: Request Status Attributes .. 13
Table 4: Customer Entity Attributes ... 15
Table 5: Product Entity Attributes .. 17
Table 6: Product Attribute Entity Attributes ... 20
Table 8: Form Element Entity Attributes .. 28
Table 9: Element “text_field” Options .. 30
Table 10: Element “text_area” Options ... 30
Table 11: Element "number" Options .. 30
Table 12: Element "date" Options ... 30
Table 13: Element "media" Options .. 30
Table 14: Element "keyword" Options ... 31
Table 15: Element "email" Options .. 31
Table 16: Element "url" Options .. 31
Table 17: Element "drop_box”, “multi_select”, “check_box”, “radio_button" Options 31
Table 18: Task Template Entity Attributes .. 33
Table 19: Task Entity Attributes .. 40
Table 20: Notification Entity Attributes .. 49
Table 21: Job Entity Attributes .. 52
Table 22: Success Codes ... 60
Table 23: Client Error Codes ... 60
Table 24: Server Error Codes ... 60

